Linear Digressions

En podkast av Ben Jaffe and Katie Malone

Kategorier:

289 Episoder

  1. Network effects re-release: when the power of a public health measure lies in widespread adoption

    Publisert: 15.3.2020
  2. Causal inference when you can't experiment: difference-in-differences and synthetic controls

    Publisert: 9.3.2020
  3. Better know a distribution: the Poisson distribution

    Publisert: 2.3.2020
  4. The Lottery Ticket Hypothesis

    Publisert: 23.2.2020
  5. Interesting technical issues prompted by GDPR and data privacy concerns

    Publisert: 17.2.2020
  6. Thinking of data science initiatives as innovation initiatives

    Publisert: 10.2.2020
  7. Building a curriculum for educating data scientists: Interview with Prof. Xiao-Li Meng

    Publisert: 2.2.2020
  8. Running experiments when there are network effects

    Publisert: 27.1.2020
  9. Zeroing in on what makes adversarial examples possible

    Publisert: 20.1.2020
  10. Unsupervised Dimensionality Reduction: UMAP vs t-SNE

    Publisert: 13.1.2020
  11. Data scientists: beware of simple metrics

    Publisert: 5.1.2020
  12. Communicating data science, from academia to industry

    Publisert: 30.12.2019
  13. Optimizing for the short-term vs. the long-term

    Publisert: 23.12.2019
  14. Interview with Prof. Andrew Lo, on using data science to inform complex business decisions

    Publisert: 16.12.2019
  15. Using machine learning to predict drug approvals

    Publisert: 8.12.2019
  16. Facial recognition, society, and the law

    Publisert: 2.12.2019
  17. Lessons learned from doing data science, at scale, in industry

    Publisert: 25.11.2019
  18. Varsity A/B Testing

    Publisert: 18.11.2019
  19. The Care and Feeding of Data Scientists: Growing Careers

    Publisert: 11.11.2019
  20. The Care and Feeding of Data Scientists: Recruiting and Hiring Data Scientists

    Publisert: 4.11.2019

2 / 15

In each episode, your hosts explore machine learning and data science through interesting (and often very unusual) applications.

Visit the podcast's native language site