Adapters: the game changer for fine-tuning - Geoffrey Angus - The Data Scientist Show #084

The Data Scientist Show - En podkast av Daliana Liu

Kategorier:

I interviewed Geoffery Angus, ML team lead @Predibase to talk about why adapter-based training is a game changer. We started with an overview of fine-tuning and then discussed five reasons why adapters are the future of LLMs. Later we also shared a demo and answered questions from the live audience. Try fine-tuning for free: https://pbase.ai/GetStarted Geoffrey’s LinkedIn:https://www.linkedin.com/in/geoffreyangus Daliana's Twitter: ⁠https://twitter.com/DalianaLiu⁠ Daliana’s LinkedIn: ⁠https://www.linkedin.com/in/dalianaliu/⁠ Daliana's Twitter: ⁠https://twitter.com/DalianaLiu⁠ Daliana’s LinkedIn: ⁠https://www.linkedin.com/in/dalianaliu/ Geoffrey’s LinkedIn: https://www.linkedin.com/in/geoffreyangus Try finetuning for free: https://pbase.ai/GetStarted (00:00:00) Intro (00:01:19) What is Fine-tuning? (00:08:18) Utilizing Adapters for Finetuning Enhancement (00:09:50) 5 reasons why adapters are the future of LLMs (00:26:34) Common Mistakes in Adapters Usage (00:28:34) Training Your Own Adapter (00:32:23) Behind the Scenes of the Adapter Training Process (00:37:51) Config File Guidance for Fine-Tuning (00:39:41) Debugging Strategies for Suboptimal Fine-Tuning Results (00:42:23) User Queries: Creating a LoRa Adapter and Future Support (00:51:06) Key Takeaways and Recap

Visit the podcast's native language site