L'IA aujourd'hui épisode du 2025-01-19
L'IA aujourd'hui ! - En podkast av Michel Levy Provençal
Kategorier:
Bonjour à toutes et à tous, bienvenue dans L'IA Aujourd’hui, le podcast de l'IA par l’IA qui vous permet de rester à la page !Aujourd’hui : Les assistants d'IA génératifs dans l'enseignement des sciences des données, un nouveau cours sur les grands modèles de langage, l'émergence des agents autonomes d'IA, le rôle du prompt engineering pour les développeurs, et les avancées dans les agents d'IA autonomes. C’est parti !Commençons par les assistants d'IA génératifs, tels que ChatGPT et GitHub Copilot, qui transforment la manière dont les gens apprennent et pratiquent le codage. Lors de discussions organisées par la communauté The Carpentries, environ 40 membres ont échangé sur l'intégration de ces outils dans les ateliers. Certains utilisent déjà ces assistants pour générer du code, corriger des erreurs ou comprendre des concepts complexes, des compétences essentielles pour les débutants en programmation. Toutefois, des réserves subsistent quant au temps nécessaire pour enseigner correctement l'utilisation de ces outils dans des ateliers déjà bien remplis. La question demeure donc de savoir comment les intégrer sans alourdir le programme existant.Passons maintenant à un nouveau cours dédié aux grands modèles de langage, ou LLM. Ce cours propose deux parcours principaux pour initier les participants à la construction et à l'utilisation des LLM. Il couvre des aspects tels que l'architecture des modèles, la tokenisation, les mécanismes d'attention, et les stratégies d'échantillonnage pour la génération de texte. Le pré-entraînement, malgré son coût élevé en calcul, est abordé pour comprendre comment les modèles acquièrent leurs connaissances. Le cours traite également de l'ajustement supervisé, qui permet aux modèles de suivre des instructions et de structurer leurs réponses, ainsi que de l'alignement des préférences pour affiner le ton et réduire les erreurs. Des sujets émergents comme la quantification et les tendances multimodales sont également inclus, offrant une vue d'ensemble des dernières avancées dans le domaine.Abordons ensuite l'essor des agents autonomes d'IA. Contrairement aux modèles traditionnels qui répondent uniquement aux sollicitations, ces agents sont capables d'interagir de manière proactive avec leur environnement pour atteindre des objectifs spécifiques. Ils perçoivent leur environnement, prennent des décisions et agissent de manière autonome. On distingue plusieurs types d'agents, des plus simples basés sur des réflexes aux plus complexes utilisant des modèles internes pour planifier et évaluer les scénarios futurs. Ces agents trouvent des applications variées, comme l'assistance à la conduite autonome, où ils peuvent collaborer avec d'autres véhicules pour améliorer la sécurité et l'efficacité du trafic. Des projets prometteurs comme Project Astra, Aomni, BabyAGI et Cognosys illustrent les avancées dans ce domaine, en proposant des solutions pour optimiser les processus décisionnels, automatiser le marketing, gérer des tâches complexes et accélérer le travail dans divers secteurs.En parlant de développement logiciel, le prompt engineering devient une compétence clé pour les ingénieurs et les développeurs. Il s'agit de l'art de formuler des requêtes précises aux systèmes d'IA pour obtenir des résultats utiles. Par exemple, plutôt que de demander simplement "Expliquez les boucles en Python", il est plus efficace de dire "Expliquez la différence entre les boucles for et while en Python, avec des exemples". Cette précision permet non seulement d'obtenir des réponses plus pertinentes, mais aussi de gagner du temps et d'améliorer la productivité. Les outils d'IA peuvent ainsi aider à générer du code standard, assister au débogage, documenter et expliquer des fonctions. En affinant progressivement leurs prompts, les développeurs peuvent tirer le meilleur parti de l'IA pour des tâches allant de l'automatisation des tests à l'apprentissage de nouvelles technologies.Enfin, revenons sur les agents autonomes d'IA et leur distinction avec les modèles actuels. Ces agents ne se contentent pas de générer des réponses sur demande, ils poursuivent activement des objectifs en influençant leur environnement. Pour organiser un voyage, par exemple, un agent pourrait rechercher des options, effectuer des réservations et fournir un itinéraire complet en interagissant avec différentes plateformes en ligne. Ils génèrent continuellement leurs propres impulsions pour atteindre leurs buts, surveillent le monde, révisent leurs perceptions et ajustent leur comportement. Les applications potentielles sont vastes, allant du tutorat personnalisé à la gestion de tâches complexes dans les entreprises. Les avancées dans ce domaine nous rapprochent de l'intelligence artificielle générale, capable de compétences étendues similaires à celles de l'esprit humain.Voilà qui conclut notre épisode d’aujourd’hui. Merci de nous avoir rejoints, et n’oubliez pas de vous abonner pour ne manquer aucune de nos discussions passionnantes. À très bientôt dans L'IA Aujourd’hui ! Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
