Dosage Compensation in Drosophila (Asifa Akhtar)
Epigenetics Podcast - En podkast av Active Motif - Torsdager

Kategorier:
Dosage compensation is an essential process to regulate the gene expression of the X-chromosome in female and male flies. Thereby the mechanism of regulation in humans and in drosophila is different. In humans one X-chromosome is randomly shut down in females compared to men, whereas in drosophila equilibrium is achieved by overexpression of the single X-chromosome in males. In this Episode our guest Dr. Asifa Akhtar provides information on her work on dosage compensation in drosophila melanogaster and how the MSL-complex, the Histone-acetyltransferase MOF work together in this process. Furthermore, she also talks about potential functions of those Proteins in the human system. References Jan Kadlec, Erinc Hallacli, … Asifa Akhtar (2011) Structural basis for MOF and MSL3 recruitment into the dosage compensation complex by MSL1 (Nature Structural & Molecular Biology) DOI: 10.1038/nsmb.1960 Thomas Conrad, Florence M.G. Cavalli, … Asifa Akhtar (2012) The MOF Chromobarrel Domain Controls Genome-wide H4K16 Acetylation and Spreading of the MSL Complex (Developmental Cell) DOI: 10.1016/j.devcel.2011.12.016 Maria Samata, Asifa Akhtar (2018) Dosage Compensation of the X Chromosome: A Complex Epigenetic Assignment Involving Chromatin Regulators and Long Noncoding RNAs (Annual Review of Biochemistry) DOI: 10.1146/annurev-biochem-062917-011816 Bilal N. Sheikh, Sukanya Guhathakurta, Asifa Akhtar (2019) The non-specific lethal (NSL) complex at the crossroads of transcriptional control and cellular homeostasis (EMBO reports) DOI: 10.15252/embr.201847630 Kin Chung Lam, Ho-Ryun Chung, … Asifa Akhtar (2019) The NSL complex-mediated nucleosome landscape is required to maintain transcription fidelity and suppression of transcription noise (Genes & Development) DOI: 10.1101/gad.321489.118 Claudia Isabelle Keller Valsecchi, M. Felicia Basilicata, … Asifa Akhtar (2018) Facultative dosage compensation of developmental genes on autosomes in Drosophila and mouse embryonic stem cells (Nature Communications) DOI: 10.1038/s41467-018-05642-2 Contact https://twitter.com/activemotif https://twitter.com/epigenetics_pod https://www.linkedin.com/company-beta/35651/ https://www.facebook.com/ActiveMotifInc/ [email protected]